Astronomía

Buscando el cálculo de la posición planetaria

Buscando el cálculo de la posición planetaria


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

En astrología hindú, para crear horóscopos (cartas natales), busco cálculos de posiciones planetarias. Entonces, ¿cómo podría calcular las posiciones planetarias de acuerdo con la fecha, la hora y el lugar dados?


Si solo está interesado en las posiciones, probablemente sea mejor que use un programa en lugar de sumergirse en la mecánica celeste. Dependiendo de lo que desee exactamente con la "posición planetaria", aquí hay tres enfoques diferentes para encontrar la posición de un planeta en un momento dado:

  1. Stellarium es un programa gratuito para resolver visualmente la posición de un planeta, y también proporciona algunos datos precisos para las posiciones de los planetas, pero debe instalarse y ejecutarse en su computadora para que no sea la forma más rápida de encontrar la posición.
  2. Si está buscando obtener las coordenadas de un planeta en los planos eclíptico y / o ecuatorial, puede dejar que esta aplicación web haga los cálculos por usted durante un tiempo determinado.
  3. Además, una búsqueda rápida en Google dio como resultado esta aplicación web diseñada para trabajar con zodiacs.

Tema: Necesidad de calcular las posiciones planetarias en el futuro


Y necesito proyectarme hasta el siglo XXIII. Realmente no es necesario ser muy preciso, solo hay que mirar si en el siglo 23 será un momento en que Marte y Júpiter estarán en el mismo lado del sol y opuestos a la Tierra, por lo que Marte está más cerca de Júpiter que la Tierra. cualquiera de los dos.

(Tomorow comprobará el enlace, gracias).

Aquí hay un gráfico de las distancias de estos tres planetas durante el siglo XXIII. Ilustra lo que estaba diciendo hhEb09'1: la distancia de Marte a la Tierra es siempre menor que su distancia a Júpiter.

Vaya, gracias por el diagrama de distancias. de todos modos, la distancia en sí no es crítica, sino la configuración. Debería verse lo más similar posible a esto:

(No es a escala y es un boceto horrible, pero entenderás mejor la idea que si trato de explicarme en inglés)

Y luego necesitaría poder calcular cómo avanzan los planetas para tener una idea de los marcos de tiempo, secuencias de eventos, fechas y demás. Es tan simple que es asombroso lo difícil que es obtener la información.

Solo necesito que Marte esté cerca de Júpiter y el sol en el medio para que el viaje de la Tierra a Júpiter sea más largo que el de Marte. al principio, luego calcule cómo se mueven los planetas y vea cómo se pueden desarrollar los eventos una vez que comience la acción.

Creo que debería dar a conocer sus necesidades con mayor precisión. Inicialmente escribiste:

Estos parecen ser diferentes.

Supongo que la primera cita significa que la distancia de Marte a Júpiter es menor que (1) la distancia de la Tierra a Marte o (2) la distancia de la Tierra a Júpiter. Ya se ha señalado que esta condición no es posible. Siempre. En oposición a la Tierra, y por lo tanto a su mayor distancia, Marte está a unas 2,5 AU de distancia, lo más cercano a Marte a Júpiter es de unas 3,7 AU.

No es necesario que Marte y Júpiter estén en oposición a la Tierra para que el segundo sea cierto. Si Júpiter y Marte están en o casi en el mismo lado del sol, Marte estará más cerca de Júpiter (mínimo 3,7 AU) que la Tierra está de Júpiter (mínimo 4,2 AU), independientemente de la posición de la Tierra. Debería haber numerosas oportunidades, durante un período variable de tiempo cada año de Marte (687 días terrestres), para que esto se mantenga.

2201 sería demasiado pronto para mis necesidades, pero jugaré con Celestia.

Esto también es fácil de hacer en Gravity Simulator. 2201 está cerca, pero los 5 más cercanos en el siglo 23 son:

11 de septiembre de 2241
17 de noviembre de 2243
9 de agosto de 2288
31 de octubre de 2290
24 de enero de 2293

Como puede ver, vienen en grupos separados por unos 45 años.

2201 parece llegar hacia el final de un grupo que es más perfecto en 2294, 2296, 2298.

Bueno, después de jugar con Celestia, julio de 2286 parece un buen momento para empezar.

Puedo abusar de su paciencia y hacerle otra pregunta. No es crítico en este momento, pero sería útil saberlo.

Quiero saber si hay un programa que, de manera similar a Celestia, podría calcular trayectorias y tiempos de viaje para naves espaciales que se mueven entre objetos en el Sistema Solar, ingresando solo su aceleración. Estoy pensando en un futuro lejano en el que los barcos puedan viajar de un objeto a otro lo más rápido posible, acelerando continuamente la mitad del tiempo de viaje y desacelerando continuamente la otra mitad del tiempo de viaje, a tasas de aceleración sostenidas de 1 G o más.

(El punto es & quot; llegar allí & quot; lo antes posible, restringido solo por la tolerancia humana a la aceleración)

A la 1gramo, no te equivocarás mucho con solo usar líneas rectas. (Celestia le dirá la distancia necesaria si va a un planeta y rastrea el otro).
Las fuerzas en su nave espacial serán mucho menores que 1gramo de otras fuentes, casi todo el tiempo, por lo que una línea recta es una muy buena aproximación. Sus tiempos de viaje también serán cortos en relación con el movimiento de los planetas, por lo que no tendrá que preocuparse por que la distancia cambie demasiado mientras viaja.

A la 1gramo, no te equivocarás mucho simplemente usando líneas rectas. (Celestia le dirá la distancia necesaria si va a un planeta y rastrea el otro).
Las fuerzas en su nave espacial serán mucho menores que 1gramo de otras fuentes, casi todo el tiempo, por lo que una línea recta es una muy buena aproximación. Sus tiempos de viaje también serán cortos en relación con el movimiento de los planetas, por lo que no tendrá que preocuparse por que la distancia cambie demasiado mientras viaja.

Gracias por el consejo. Estaba planeando hacerlo así, pero quería estar seguro. 1g es una tasa de aceleración considerable para mantenerla durante largos períodos y supuse que la fuerza de gravedad sería mucho menor que eso, por lo que el problema real sería lo suficientemente similar como para ir de A a B en línea recta.

El problema comenzaría con más procedimientos de ahorro de energía, o en caso de que no pudiera encontrar la manera de mantener 1g durante todo el camino. FAI, ¿0.1g sería todavía un empuje lo suficientemente grande como para no preocuparse por la fuerza de gravedad?

La idea es utilizar la fusión nuclear. Estoy pensando en una propulsión iónica impulsada por fusión "crucero" (que expulsa unos pocos gramos de propelente y combustible gastado a casi c, utilizando aproximadamente el 10% de la salida del reactor para lograr un empuje de aproximadamente 0,1 g), y alternativamente use el propulsor para enfriar el núcleo de fusión al 100% de salida y proporcionando un empuje mucho mayor, el empuje sostenido de 1g, dejando un rastro ultravioleta-caliente de kilogramos de propulsor y combustible gastado por segundo. sin embargo, eso aún está por llegar. Hasta ahora, solo necesitaba una fecha de inicio para establecer la trama que realmente he calculado todavía.


Instrucciones

1. La posición del planeta en relación con el sol se conoce como heliocéntrica.

Calcula la longitud y latitud de la eclíptica del planeta. Después de elegir su planeta, debe formular su posición eclíptica en relación con el sol. Para ello, deberá calcular el semieje mayor de la órbita del planeta, la distancia del sol al planeta, el punto de paso más cercano al sol y el ángulo del planeta en relación con su punto de paso más cercano al sol. Utilizará unidades astronómicas para determinar la distancia y el tiempo medidos en años. Este cálculo es la posición heliocéntrica (centrada en el sol) del planeta.

2. El ecuador celeste es elíptico y las coordenadas se basan en diferentes variables.

Convierta la posición heliocéntrica en una posición geocéntrica. Si continúa utilizando los algoritmos establecidos por las leyes de Kepler, debe determinar la posición del planeta en relación con la Tierra. Esta es la posición geocéntrica del planeta. La formulación de esta posición le proporcionará las coordenadas eclípticas del planeta en relación con la Tierra.

3. Las coordenadas deben reasignarse porque el posicionamiento planetario cambia todos los días.

Determine las coordenadas ecuatoriales mediante la conversión de coordenadas eclípticas. En la Tierra, usamos coordenadas ecuatoriales para determinar la posición de ubicaciones en el planeta. El ecuador se utiliza para determinar la longitud y la latitud. Determinar la ubicación de un planeta, en relación con la Tierra, requiere utilizar el ecuador celeste, que tiene ascensión y declinación rectas. Utilice la hora media de Greenwich al calcular estas coordenadas, como se establece en las leyes de Kepler. Determine dónde se encuentra la ascensión recta del planeta con la eclíptica. Esta formulación le proporcionará la posición del planeta en relación con la Tierra. Sus coordenadas no serán exactas, pero si completa las ecuaciones correctamente, calculará la posición en unos pocos minutos de precisión.



Etiquetas: relación planetaria, relación Tierra, Leyes de Kepler, Relación del planeta Tierra, posición planeta, basado en


Software de cálculo planetario de astronomía

MEGABYTE Planetario Relaciones muestra el tipo de relación compartida entre diferentes planetas. El software MB Planetary Relationships encuentra los patrones planetarios tal como aparecen en su carta natal e interpreta las relaciones entre los planetas. Las relaciones planetarias de la astrología dependen de en qué casas se colocan y también de sus posiciones relativas con respecto a los otros planetas.

  • Nombre de archivo: MBFreePlanetaryRelationships .exe
  • Autor: MysticBoard.com
  • Licencia: Shareware ($)
  • Tamaño de archivo: 1.21 Mb
  • Funciona en: WinXP, WinNT 4.x, WinME, Win2003, Win2000, Win Vista, Win98, Win95

Hoy en día, la idea de una música de las esferas, o una música cósmica que desciende de los planetas, parece más una filosofía poética que algo científico. Sin embargo, cuando el científico Kepler descubrió principios especiales sobre planetario movimiento, él también. .

  • Nombre de archivo: harmonia.tar.gz
  • Autor: armonía
  • Licencia: Freeware (Gratis)
  • Tamaño archivo: 17.44 Mb
  • Funciona en: Windows Mac Linux

Herramienta de código abierto para ayudar con el estudio de Astronomía, Astrofísica y Cosmología. Para incluir datos útiles y cálculo de ecuaciones comunes utilizadas en el estudio básico de estos temas. Las versiones posteriores pueden interactuar con otras Astronomía software. .

  • Nombre de archivo: AstrolabNBV0_965p.zip
  • Autor: alchymy
  • Licencia: Freeware (Gratis)
  • Tamaño archivo: 57.64 Mb
  • Funciona en: N / A

MB Astrología Occidental Planetario Aspectos calcula la distancia angular o los aspectos entre diferentes planetas según la astrología occidental. MB Western Astrology Planetary Aspects encuentra las distancias angulares entre planetas de acuerdo con los principios de la Astrología Occidental e interpreta las influencias de los aspectos planetarios sobre usted. Usando esta maravillosa herramienta para la lectura de los aspectos planetarios de la astrología occidental, puede saber cómo sus tendencias básicas y otros rasgos de personalidad están influenciados por los aspectos planetarios o las posiciones planetarias angulares.

  • Nombre de archivo: MBFreeWesternAstrologyPlanet aryAspects.exe
  • Autor: MysticBoard.com
  • Licencia: Shareware ($)
  • Tamaño de archivo: 1.44 Mb
  • Funciona en: WinXP, WinNT 4.x, WinME, Win2003, Win2000, Win Vista, Win98, Win95

MB Pataki Chakra genera el Pataki Chakra de su carta natal basado en los principios de la Astrología Védica. MB Pataki Chakra Software hace el cálculo del chakra Pataki y encuentra las posiciones planetarias de la astrología védica tal como aparecen en la tabla de chakra Pataki o en la tabla Pataki. Si desea obtener su gráfico de chakra Pataki e interpretarlo para que pueda conocer los efectos de las posiciones planetarias del chakra Pataki, todo lo que necesita hacer es descargar MB Pataki Chakra Software y obtener una interpretación gratuita del chakra Pataki que también explica para ti el.

  • Nombre de archivo: MBFreePatakiChakra.exe
  • Autor: MysticBoard.com
  • Licencia: Shareware ($)
  • Tamaño de archivo: 1.37 Mb
  • Funciona en: WinXP, WinNT 4.x, WinME, Win2003, Win2000, Win Vista, Win98, Win95

Matemáticas avanzadas, finanzas, divisas, estadísticas, combinativas, fechas, curvas, series, unidades y conversiones de calendarios. astronomía, geometría, pi, química, electricidad. Calculadora de Divx. Juegos de gravitación, billar.

  • Nombre de archivo: khi3.msi
  • Autor: GPMI
  • Licencia: Freeware (Gratis)
  • Tamaño de archivo: 7.63 Mb
  • Se ejecuta en: Win95, Win98, WinME, WinNT 3.x, WinNT 4.x, WinXP, Windows2000, Windows2003

Matemáticas avanzadas, finanzas, divisas, estadísticas, combinativas, fechas, curvas, series, unidades y conversiones de calendarios. astronomía, geometría, pi, química, electricidad. Calculadora de Divx. Juegos de gravitación, billar.

  • Nombre de archivo: khi3.msi
  • Autor: Osez Print
  • Licencia: Freeware (Gratis)
  • Tamaño archivo: 43.61 Mb
  • Funciona en: WinXP, Windows2000, Windows2003, Windows Vista, Win98, WinME, WinNT 3.x, WinNT 4.x, Win95, Win 3.1x

Planet's Orbits (para Windows 98 / ME / 2000 / XP) es un orrery digital preciso con una gran cantidad de funcionalidades. El programa utiliza las efemérides DE404 (precisas para fechas entre 2000 a. C. y 6000 d. C.) para la cálculo de planetario (excepto Plutón).

  • Nombre de archivo: po17.exe
  • Autor: alcyone software
  • Licencia: Shareware ($ 25.00)
  • Tamaño archivo: 15.25 Mb
  • Funciona en: Windows 9X, ME, 2K, XP, 2003

MB Astrología Planetario Patterns Software encuentra el planetario patrones tal como se muestran en su carta natal de astrología y le dice las influencias de los planetas astrológicos considerando su planetario patrones o posiciones de los planetas. La. .

  • Nombre de archivo: MBFreeAstrologyPlanetaryPatt erns.exe
  • Autor: MysticBoard.com
  • Licencia: Freeware (Gratis)
  • Tamaño de archivo: 1.63 Mb
  • Se ejecuta en: Win95, Win98, WinME, WinNT 4.x, Windows2000, WinXP, Windows2003, Windows Vista

Un módulo PHP para ayudar a realizar cálculos astronómicos avanzados, como planetario posiciones como las publicadas en el módulo PHP astronómico A para ayudar a realizar cálculos astronómicos avanzados, como posiciones planetarias como las publicadas en los almanaques astronómicos.

  • Nombre de archivo: mars.zip
  • Autor: phpastronomylab
  • Licencia: Freeware (Gratis)
  • Tamaño de archivo: 2.13 Mb
  • Funciona en: Windows Mac Linux

Este salvapantallas es una serie de imágenes del sistema solar. Cada planeta está allí junto con sus satélites y descripción científica básica. ¡Belleza pura con efecto educativo para niños y adultos!

  • Nombre de archivo: solarsystem_screensaver_1024 x768.exe
  • Autor: Laboratorio de Internet & quotKsan & quot
  • Licencia: Shareware ($ 14.95)
  • Tamaño de archivo: 3.25 Mb
  • Se ejecuta en: Win95, Win98, WinME, WinXP, Windows2000, Windows2003

MB Astrología Védica Drishti (Aspectos) calcula sus aspectos de acuerdo con la Astrología Védica. Esto incluye a Rashi Drishtis (Aspectos de signos), Graha Drishti (Aspectos planetarios) y Sputa Drishti (Aspectos angulares). El software MB Vedic Astrology Drishti (Aspects) es la herramienta perfecta para usted si desea conocer los aspectos angulares de los planetas astrológicos entre sí y sus influencias en su naturaleza, carácter y rasgos de personalidad.


Carta de nacimiento de astrología y ascendente de la carta de Rasi # 8211

En el momento del nacimiento, se establece el Signo Ascendente (Ascendente), basado en la constelación (signo del zodíaco) en el horizonte oriental.

Cada signo ascendente tiene sus propias características y ayuda a identificar la personalidad del individuo.

El signo ascendente cambia cada dos horas del día; el signo ascendente, que cambia cada dos horas, tiene prioridad sobre los signos del Sol y la Luna.

La Luna permanece en un signo durante dos días y medio. Cualquiera puede ser de Aries a Piscis.


Iterador ($ t, $ ids,% opciones)

Devuelve la función iteradora, que, a su vez, cuando se llama, devuelve undef, cuando se agota, o arrayref, que contiene:

identificador del cuerpo celeste, una cuerda

arrayref, que contiene coordenadas de la eclíptica: longitud (grados de arco), latitud (grados de arco) y distancia desde la Tierra (AU).

movimiento diario medio, doble, si la opción with_motion es cierto

Argumentos posicionales

$ t & mdash tiempo en siglos desde la época 2000.0 para una mejor precisión UTC debe convertirse a tiempo de efemérides, consulte & quot; Tiempo universal frente a tiempo de efemérides & quot.

$ ids & mdash referencia a una matriz de identificadores de cuerpos celestes a calcular.

Opciones

with_motion & mdash marca opcional cuando se establece en cierto, hay adicional movimiento campo en el resultado falso por defecto.


Astrología sin casas

La razón por la que ninguno de estos cuatro programas implica un ascendente, o astrológico casas, es que el ascendente (y por lo tanto cualquier sistema de casas) depende de una posición geográfica (generalmente un lugar de nacimiento). Pero los aspectos entre planetas y, por tanto, los tránsitos planetarios, dependen únicamente del movimiento de los planetas a lo largo de la eclíptica según se ve desde la Tierra (o el Sol). Por lo tanto, un tránsito planetario no requiere, ni implica, un ascendente (y, por lo tanto, ningún sistema de casas). Los aspectos y tránsitos tienen su propio significado astrológico. (Sí, astrología sin casas es Los signos (derivados de la división igual de la eclíptica) son como de costumbre, por ejemplo, Neptuno está en Piscis desde el 4 de abril de 2011 hasta el 30 de marzo de 2025 y vea este telio Su & # 8209Me & # 8209Sa & # 8209Pl 4 & # 8209 en Capricornio el 12 de enero de 2020). Para un ejemplo heliocéntrico, vea esta cometa doble.

Hay 7 sistemas de casas comúnmente utilizados por los astrólogos, y más de 20 son posibles. Dan resultados diferentes al interpretar un horóscopo (y los sistemas de Koch y Placidus ni siquiera funcionan para todas las latitudes). ¿Cuál da la interpretación "correcta"? ¿O deberíamos simplemente concluir que los "significados" dados a las casas son elecciones (¿arbitrarias?) Tomadas por los astrólogos hace mucho tiempo, pasadas acríticamente de generación en generación, y que solo los aspectos (especialmente los patrones de aspecto) y los tránsitos son importantes (y aún deben interpretarse correctamente). )?

El desarrollador de estos programas de astronomía / astrología computacional (Peter Meyer) está actualmente disponible para el desarrollo de software personalizado a un precio asequible. Si está interesado, deje un mensaje aquí.

-> Puede expresar su agradecimiento por el trabajo del autor
de este sitio web y software donando Bitcoin a esta dirección:
1Ba3E9DnE3jEDngK1MmoNU7xtCpyGN3yR5
Por favor haz click para el código QR y copiar al portapapeles.


Tarea 4. Posiciones planetarias

Predecir las posiciones planetarias era muy difícil para los astrónomos antiguos. Con técnicas modernas, es posible realizar predicciones precisas, si puede hacer los cálculos. Esta asignación utiliza un método más simple que produce predicciones moderadamente precisas, lo suficientemente buenas como para encontrar los planetas en el cielo.

Su trabajo consiste en calcular las posiciones de los planetas "clásicos" (Mercurio, Venus, Tierra, Marte, Júpiter y Saturno) en la fecha que elija. No dude en elegir la fecha que desee: un cumpleaños, un día festivo o lo que sea. Las instrucciones para calcular las posiciones se encuentran al final de este folleto. Use la hoja de trabajo en el otro lado cuando haga sus cálculos, y trace sus resultados en los diagramas a continuación y en el otro lado.

Escriba aquí la fecha que eligió: ____________________

Fig. 1. Órbitas de Mercurio, Venus, Tierra y Marte.

Fig. 2. Órbitas de la Tierra, Júpiter y Saturno.

Hoja de cálculo

Encuentre el número de días D desde el 1 de enero de 2000 hasta la fecha anterior.

Ahora complete los valores de r, s, f y L para cada planeta.

PLANETA P (días) r s F L
Mercurio 87.97 ____________ ______ ____________ ______
Venus 224.64 ____________ ______ ____________ ______
tierra 365.26 ____________ ______ ____________ ______
Marte 686.79 ____________ ______ ____________ ______
Júpiter 4332.80 ____________ ______ ____________ ______
Saturno 10759.7 ____________ ______ ____________ ______

INSTRUCCIONES

Las órbitas que se muestran arriba están marcadas en fracciones del período orbital. En cada órbita, el punto etiquetado con '0.0' muestra dónde estará el planeta el 1 de enero de 2000. Asimismo, el punto etiquetado con '0.1' muestra dónde estará el planeta una décima parte de un período orbital más tarde, y así sucesivamente. camino alrededor.

El primer paso es encontrar el número de días desde el 1 de enero de 2000 hasta la fecha elegida. Llame a este número D; debería ser negativo si la fecha elegida es anterior al 1 de enero de 2000 y positivo si es posterior. Para calcular el número de días, multiplique el número de años por 365,26 (el número de días en un año). Luego use un calendario para calcular cuántos días agregar.

Un ejemplo puede ayudar a aclarar esto. Suponga que la fecha elegida es el 30 de agosto de 1956. El próximo día de Año Nuevo, 1 de enero de 1957, es 43 años antes del 1 de enero de 2000. Un calendario muestra que hay 2 meses de 30 días (septiembre y noviembre) y dos 31 días (octubre y diciembre) entre el 1 de septiembre de 1956 y el 1 de enero de 1957. Finalmente, el 30 de agosto de 1956 llega dos días antes del 1 de septiembre de 1956, así que

D = - (43 y tiempos 365,26 + 2 y tiempos 30 + 2 y tiempos 31 + 2) = -15830.

Ahora, para cada planeta, divida D por el período orbital P del planeta que figura en la segunda columna de la hoja de trabajo, llame al resultado r y escríbalo en la tercera columna. Si r es positivo, tome su parte entera, multiplique por -1, llame al resultado s y escríbalo en la cuarta columna. Si r es negativo, tome la parte entera de su valor absoluto, agregue 1, llame al resultado s y escríbalo en la cuarta columna. Ahora agregue rys, llame al resultado f y escríbalo en la quinta columna. El número f debe estar entre 0 y 1.

Una vez más, un ejemplo puede ayudar. Digamos que estamos tratando de averiguar las posiciones de la Tierra y Venus el 30 de agosto de 1956. Ya encontramos que D = -15830 días. Para la Tierra, obtenemos

r = D & dividir P = -15830 & dividir 365.26 = -43.34, s = 43 + 1 = 44, f = -43.34 + 44 = 0.66,

y para Venus,

r = D & dividir P = -15830 & dividir 224.64 = -70.47, s = 70 + 1 = 71, f = -70.47 + 71 = 0.53.

Para cada planeta, el valor f que acaba de calcular es la fracción de la órbita del planeta que se completó en la fecha elegida. Con estos valores, puede marcar la posición del planeta a lo largo de su órbita. Enumerada al aumentar la distancia del Sol, la Fig. 1 muestra las órbitas de Mercurio, Venus, la Tierra y Marte, mientras que la Fig. 2 muestra las órbitas de la Tierra, Júpiter y Saturno. Encuentre la órbita de Mercurio, comience en el punto etiquetado como "0.0" y escanee en sentido antihorario hasta que alcance el valor f que calculó para Mercurio. Haga lo mismo para todos los planetas, asegúrese de marcar la Tierra en ambas Figs. 1 y 2!

Para continuar con el ejemplo, encontramos f = 0,66 para la Tierra y f = 0,53 para Venus. A la derecha se muestra parte de la Fig. 1, con círculos rellenos que marcan f = 0,66 en la órbita de la Tierra y f = 0,53 en la órbita de Venus.

Con una regla, dibuje líneas desde la Tierra a cada uno de los otros planetas en las Figs. 1 y 2. Estas líneas de visión muestran en qué dirección debes mirar en la fecha elegida para ver cada planeta. Pero para averiguar dónde mirar en la eclíptica, se necesita un paso más. Los círculos exteriores de las Figs. 1 y 2 realmente deberían dibujarse con un diámetro casi infinito, ya que representan posiciones entre las estrellas. Es imposible dibujar las órbitas planetarias y las estrellas circundantes a escala, así que he hecho trampa al dibujar los círculos exteriores solo un poco más grandes que las órbitas que encierran. Debido a esto, una línea trazada desde la Tierra a otro planeta y más allá del círculo exterior no indicará correctamente la posición del planeta a lo largo de la eclíptica. Entonces, cada vez que dibuje una línea desde la Tierra a un planeta, dibuje otra línea comenzando desde el Sol y paralela a la línea recién dibujada. El lugar donde esta segunda línea llega al círculo exterior muestra dónde a lo largo de la eclíptica realmente encontrarás el planeta.

Los números a lo largo del círculo exterior son longitudes celestes: miden ángulos alrededor de la eclíptica. Mientras dibuja las dos líneas paralelas para cada planeta, observe dónde la línea del Sol llega al círculo exterior y registre la longitud L en la columna final de la hoja de trabajo.

Siguiendo el mismo ejemplo que el anterior, el diagrama de la derecha muestra la línea de la Tierra hacia Venus y la línea paralela del Sol al círculo exterior. Es esta segunda línea la que muestra dónde aparece Venus en el cielo visto desde la Tierra el 30 de agosto de 1956. Venus debería tener una longitud celeste L = 112 & deg el 30 de agosto de 1956. Lo comprobé usando la página web Your Sky. El resultado que se muestra debajo de la línea inclinada es la eclíptica, y Venus se muestra con su símbolo habitual. Como puede ver, ¡los resultados están muy de acuerdo!


Posiciones planetarias con VSOP87

VSOP87 proporciona un método para calcular las posiciones de los 8 planetas (y el Sol) de manera eficiente y precisa sin los grandes dolores de cabeza con los que tuvieron que lidiar los astrónomos de siglos pasados.

Desde la antigüedad, los humanos han observado y rastreado los movimientos de los 5 planetas más brillantes: Mercurio, Venus, Marte, Júpiter y Saturno, además del Sol y la Luna. Hoy conocemos dos planetas adicionales, Urano y Neptuno, además de una gran cantidad de otros cuerpos celestes móviles, incluidos asteroides y cometas. A medida que la tecnología mejoraba, también lo hacía nuestra capacidad para predecir los movimientos de estos objetos. Hoy, utilizando algoritmos avanzados como VSOP87, podemos predecir las posiciones de los planetas dentro de una diezmilésima de grado miles de años en el futuro.

La teoría y las soluciones VSOP87, de Pierre Bretagnon y Gerard Francou de Bureau des Longitudes, son probablemente los algoritmos más utilizados y más precisos disponibles en la actualidad para determinar las posiciones de los planetas sin utilizar la interpolación. Consiste en una gran cantidad de términos periódicos que luego se suman de una manera especial para producir las coordenadas heliocéntricas tridimensionales de cualquier planeta en cualquier momento en el tiempo durante miles de años en el futuro y en el pasado. Estas coordenadas se pueden convertir a través de algunas transformaciones en coordenadas geocéntricas que se pueden utilizar para mostrar su posición como se ve desde la Tierra. Como sugiere el nombre, VSOP87 se desarrolló en 1987, hace mucho tiempo según los estándares tecnológicos y se basa en las efemérides DE200 que desde entonces han quedado obsoletas. No obstante, para todos los propósitos prácticos, el error que se origina en VSOP87 es insignificante e imperceptible para todos, excepto para los telescopios más potentes.

A pesar de esta aparente utilidad, hay poca documentación o ejemplos disponibles en línea, además de algunas implementaciones de usuario y el código Fortran proporcionado. Al mirar estos, no es obvio lo que están haciendo a menos que ya esté familiarizado con VSOP87 o tenga una experiencia significativa con Fortran. Para los programadores novatos, la aparente complejidad del código puede ser suficiente para asustarlos para siempre. Es por eso que durante las últimas décadas, el recurso de referencia para aprender a usar VSOP87 ha sido el renombrado libro de Jean Meeus, Algoritmos astronómicos. Incluso en la era de Internet, sigue siendo el único recurso disponible para aprender a usar VSOP87. A pesar de esto, el algoritmo es relativamente simple, uno que no requiere un libro completo para entender si es todo lo que se necesita. Esta página intentará aclarar cualquier aspecto confuso del algoritmo para que cualquier persona con una computadora pueda implementarlo rápida y fácilmente.

Empezando

Los archivos de datos de VSOP87 están disponibles en el sitio FTP de VSOP87 y están organizados por solución y serie. Hay varias soluciones VSOP87 diseñadas para varios propósitos. Ellos son:


  • VSOP87 - elementos orbitales, de J2000.0
  • VSOP87A - rectangular, de J2000.0
  • VSOP87B - esférico, de J2000.0
  • VSOP87C - rectangular, equinoccio de fecha
  • VSOP87D - equinoccio de fecha esférico
  • VSOP87E - rectangular, baricéntrico, de J2000.0

Todas las soluciones están centradas en el Sol, excepto VSOP87E, que está centrado en el baricentro del sistema solar.

Para determinar las posiciones de los planetas en el cielo, es más conveniente usar VSOP87C que produce coordenadas rectangulares que son fáciles de transformar (Meeus usa una versión truncada de VSOP87D en su libro). Como resultado, esta página se concentrará en el uso de esta solución en particular, aunque tocará brevemente la aplicación de los mismos conceptos a las otras soluciones.

Para comenzar, descargue los archivos de datos necesarios del sitio; es necesario tener una copia de los datos para cada planeta cuya posición se calculará para la solución seleccionada. Además, si se desea calcular la posición aparente del planeta a partir de la Tierra, también se necesitan los datos de la Tierra.

Entendiendo los datos

Los datos de cada planeta se dividen en tres secciones etiquetadas con tres letras diferentes: X, Y y Z para VSOP87C, y L, B yr para VSOP87D. Cada una de estas secciones se calcula individualmente para obtener la coordenada representada por esa sección. Para VSOP87C, las X, Y y Z forman las coordenadas heliocéntricas rectangulares (cartesianas) de cada planeta, mientras que para VSOP87D, L (longitud eclíptica), B (latitud eclíptica), r (distancia) forman las coordenadas esféricas heliocéntricas de cada planeta. . En los archivos de datos, cada uno de ellos está etiquetado como "Variable 1" (X o L), "Variable 2" (Y o B) y "Variable 3" (Z o r).

Dentro de cada sección, los datos se subdividen en series individuales de términos generalmente denominados X0, X1, X2. (o X0, X1, X2. ) aunque están etiquetados en los datos como * T ** 0, * T ** 1, * T ** 2. Cada una de estas series consta de una lista de conjuntos de 3 coeficientes (los 3 números más a la derecha en los datos) generalmente denominados A, B y C. Cada conjunto de coeficientes se usa para calcular un término de la serie usando una fórmula particular. A continuación, se suman los términos de cada serie. Estas sumas en serie se colocan luego en otra fórmula para obtener el valor real de la coordenada. Esto luego se repite para cada coordenada del planeta para obtener la posición heliocéntrica de los datos.

Matemáticamente, este es solo un gran conjunto de ecuaciones paramétricas que son funciones del tiempo, aunque generalmente no está escrito como tal debido a problemas de legibilidad derivados de su tremendo tamaño.

Usando los datos: VSOP87C

Esta sección se centrará en VSOP87C para Venus y su coordenada X. Las fórmulas presentadas aquí son igualmente aplicables para cualquier coordenada de cualquier otra solución de VSOP87, excepto solo con números diferentes.

En el archivo de datos (VSOP87C.ven), el primer conjunto de 3 coeficientes de la serie X0 son 0.72268045621, 3.17614669179 y 10213.52936369450. Para encontrar el término que representa este conjunto, use la siguiente fórmula:

Aquí, A, B y C son los coeficientes anteriores y T es el número de milenios julianos desde J2000.0. Se puede encontrar con la siguiente fórmula:

JDE es la Fecha Juliana de Efemérides (la Fecha Juliana correspondiente al Tiempo Terrestre) del momento para el cual se calculará la coordenada.

Para determinar el primer término para el 21 de diciembre de 2012 a las 0:00 TT (JDE 2456282.5), encontramos:

Tenga en cuenta que cos () debe configurarse para aceptar radianes para que estos términos funcionen.

Repita este cálculo usando el mismo valor de T con los coeficientes restantes de la serie para obtener los otros términos de la serie X0. Cuando termine, tome la suma de los términos y guarde este valor como X0. Al hacerlo, encontramos que X0 = -0.60495199432. Repita este cálculo para las series restantes: X1, X2, X3 y X4.

Los resultados (para el 21 de diciembre de 2100 a las 0:00 TT, como arriba) deben ser:

Estos valores se pueden usar para determinar el valor real de X con la siguiente fórmula:

Esta fórmula explica el razonamiento detrás de las etiquetas para cada una de estas series (* T ** 0, * T ** 1, * T ** 2.) Ya que indican por qué se debe multiplicar cada serie para obtener el valor real de cada una. serie. En otras palabras, para obtener el término que incluye X4 (como se calculó anteriormente), etiquetado como * T ** 4, use X4 * T ** 4. La fórmula anterior es efectivamente la suma de cada uno de estos términos. (Tenga en cuenta que "término" aquí se refiere a los términos de la fórmula anterior, no a los términos que forman cada serie como se usó anteriormente)

Reemplazando los valores de T y X0 a X4 en la fórmula, obtenemos X = -0.604958132783. Unidades para VSOP87C es la unidad astronómica (AU), por lo que si la posición de Venus se traza en un espacio cartesiano centrado en el Sol, su coordenada X estaría en -0.604958132783 AU.

Para encontrar el conjunto completo de coordenadas, repita esto con las series Y y Z usando el mismo valor de T obtenido anteriormente.

Notas sobre el uso de coordenadas esféricas

El procedimiento ilustrado arriba es idéntico cuando se usa la solución VSOP87A que también devuelve coordenadas rectangulares. However, with VSOP87B, VSOP87D and VSOP87E which use spherical coordinates, there are a few considerations to take note of that arise from the use of the different coordinate system.

The first important note is that result of L (ecliptic longitude) and B (ecliptic latitude) obtained through the method outlined above will output values in radians. In astrodynamics, units of radians are rarely (if ever) used, so the values should first be converted to degrees by multiplying them by 180 / Pi.

In addition, the values should be also modulated to within the proper range before being used -- longitude is from 0 to 360 degrees, latitude from -90 to 90 degrees. Otherwise, the algorithm may output values on the order of several millions of degrees which is indecipherable to humans and may cause issues when given to computers.

Beyond these added considerations, the procedures for obtaining L, B and r are identical to the one used to obtain the X coordinate for Venus above.

Finding Geocentric Coordinates

The results of VSOP87C above are heliocentric coordinates, centered on the Sun. Since none of us actually live on the Sun, it might be more useful to obtain geocentric coordinates, centered on the Earth. Using rectangular coordinates, a simple transformation is all that is needed to convert.

Determine the heliocentric rectangular coordinates of the planet to locate (Xobj, Yobj and Zobj) as well as those of Earth (Xtierra, Ytierra and Ztierra) and subtract. This will now set the position of every planet in a space where the origin is the position of Earth. To verify this, set Xobj, Yobj and Zobj to Xtierra, Ytierra and Ztierra and, as expected, the new position of Earth is (0, 0, 0), the origin.

To determine the geocentric position of the Sun, set Xobj, Yobj and Zobj all to zero (since it was at the origin in the heliocentric system). The formula for the Sun can then be simplified to:

To transform this into spherical Ecliptic coordinates, use:

Be sure to obtain these to the correct quadrants either manually or by using atan2(). These can then be quickly converted to equatorial coordinates using the typical ecliptic-to-equatorial formulas.


Astrological Predictive Techniques | Planetary Years | 1. Minor Years and the Division of Days

Many modern astrologers may not realize that each of the planets has certain numbers of years assigned to it. Even in today’s traditional astrological circles the years of the planets are underutilized for prediction.

Most of the techniques for using the planetary years disappeared in the late middle ages. However, in Hellenistic astrology, planetary years are the basis of a large number of predictive techniques. This is especially so in the techniques of Vettius Valens (2nd century CE) and Julius Firmicus Maternus (4th century CE).

In this article, I introduce the most common type of planetary years, the Minor Years of the planets. I discuss how they can be used as indicators of when a certain configuration in the chart will “ripen”. Also discussed is how they can be used to divide the year into time lords.

The Minor Years of the Planets

What are the minor years of the planets? They are consistently given in many different texts. One source is at the end of Book III of the Anthology by Valens (free download). Below I provide the Minor Years of each planet.

  • Saturn – 30
  • Jupiter – 12
  • Mars – 15
  • Sun – 19
  • Venus – 8
  • Mercury – 20
  • Moon – 25

The rationale for these numbers concerns times when the planets return to the same positions in the sky with the Sun (synodic cycles). However, the Sun’s number, 19, is based on the metonic cycle. The Sun and Moon meet at the same position in the sky every 19 years. The Moon’s number, 25, is based on a relationship between the lunation cycle and the Egyptian calendar that repeats every 25 years.

Minor Years as Ripening Planets

In various sections of the Anthology, especially Book VII, Valens uses the years of the planets for prediction. He combines the minor years of planets that are in configurations. Valens also combines minor years of planets with those of their ruler. Additionally, he combines planetary years with the number of years of the rising time of the sign. There are techniques with planetary years, planetary months (i.e. 1/12 of the planetary years), rising times of signs, and even fractions of planetary years.

For our purposes let’s focus initially on planetary years and their combinations. The basic idea is that a planet’s effects are likely to manifest or ripen near to the number of years of the planet. Multiples of the years are also used. For instance, Venus ripens every 8 years, so at age 16, 24, 32, and 40 she may also come into focus. Note that I say age 16, but the native’s 16th year is actually when she is 15, so the indication can also be for the year leading up to that age.

Combining Years

Combinations include summing the Minor Years of two planets. We can sum the Minor Years of a planet and its ruler for activation of the planet in the sign. For instance, age 27 may be an activation of the Sun in Taurus (Sun 19 plus Venus 8). Additionally, to time out the ripening of configurations we combine the years of the planets involved. For instance, age 27 may see the activation of a Jupiter (12) square Mars (15) configuration in the chart.

The Place of Minor Years in Prediction

Delineation is the act of analyzing the natal chart to see what is indicated for the person’s life. In delineation, it is always a good idea to make sure there are multiple factors indicating the same thing or something similar. Multiple factors (such as natural significator, twelfth-parts, house, lots, etc.) provide for confirmation that something is really a significantly indicated in someone’s life.

Repetition is Necessary

When doing predictive work, too many astrologers toss out this rule of confirmation through multiple factors. Too often astrologers predict based on just one technique, whether transits, directions, returns, or one of the many time lord techniques. However, when an important event occurs in the life that is an activation of the natal chart, you will see it activated in a number of ways through a number of predictive techniques.

Don’t assume that such-and-such will happen because it is indicated by a set of transits, by profections, by zodiacal releasing, or any other single technique. When you see an indication of something with one technique, check a variety of other predictive techniques to see the same or related activations. Planetary years provide a valuable addition to your predictive toolbox.

Example 1: The Death of Whitney Houston

In a prior article, on the death of Whitney Houston, I noted that she died in her 49th year. I also discussed how Sun-Saturn configurations ripen at 49. Whitney had a Sun-Saturn opposition across the 6th and 12th houses of her chart. The 6th and 12th house are often the most difficult houses of the chart, as they related to health crises and other difficult events.

Saturn is the natural signficator of death and the Sun is the natural significator of life. The Sun’s years are 19, and those of Saturn are 30. Therefore, the activation of this configuration at 49 years confirms the indications at death. Those indications and their relationship to the Sun-Saturn configuration are explored in more detail in that article.

Example 2: Hitler’s rise to power

In the summer of 1934, Hitler became leader of Germany after the death of President von Hindenburg. Hitler was 45 years old. The sum of the years of Saturn (30) and Mars (15).

This saw the realization of his scrutinizing (i.e. within 3 degrees) Mars-Saturn square from Taurus to Leo. The square is from the 8th pertaining to death to the 11th pertaining to organizations. Saturn in Leo advances toward the MC in his chart, promising leadership. Mars in the 8th pertains to death. Death (of von Hindenburg) precipitated Hitler’s rise to organizational power.

Hitler was able to eliminate obstacles and seize supreme unimpeded power over Germany’s direction by early 1938. At the time, Hitler was nearing his 49th birthday. This is the realization of his role as a culminating Saturn in Leo. The combination is of the years of Saturn (30) and its ruler the Sun (19). The Sun also dominates Saturn from the 8th, so it also is the activation of the Sun-Saturn square configuration.

Example 3: The 1st edition of Witte’s Rules of Planetary-Pictures

Alfred Witte’s “Rules of Planetary-Pictures” is the definitive foundational text of Uranian astrology. Alfred Witte turned 50 in 1928, the year of the first publication. This coincided with the ripening of Mercury-Saturn configurations (20+30) and those of the Moon itself (25+25).

Alfred Witte’s Natal ChartWitte was born with Mercury in Aquarius (ruled by Saturn), and that Mercury was also conjunct the Moon. Therefore, both Mercury in Aquarius (20+30) and Witte’s Moon (25+25) ripen at the time of the publication (age 50).

Mercury in Aquarius is in the 5th house of Witte’s chart, that of creative output, children, and entertainment. Mercury in this place is significant of teachings and publications. Saturn’s rulership indicates structure and foundations.

An interesting tidbit about Witte’s Mercury at 27 Aquarius and Moon at 28 Aquarius is that they closely oppose the modern planet Uranus (father sky) at 26 Leo and the asteroid Urania (muse of astrology) at 25 Leo.

More Examples

I’d like to leave it to the reader to find some additional interesting examples. Examine your own chart, those of friends, and those of celebrities. Look at the years of the most significant events in those lives. Which planets, planets in signs, and planetary configurations were activated at those times? How do those activations pertain to the events? Feel free to share interesting cases that you encounter in the comments section.

Planetary Days and Their Eerie Sum

One of the most fascinating things about the minor years is that the sum of each’s double, half, and third is 365.5. This is almost matches the precise number of days in a year (365.2422).

These sums of the double, half, and third also are the days of each planet. They are given in Book II, Chapter 29 of the Mathesis by Firmicus Maternus (“The Division of the Year”) with a couple minor errors. A more precise list is given by Vettius Valens at the beginning of Book IV of his Anthology. The planetary days are given below:

  • Saturn – 85 = 60+15+10
  • Jupiter – 34 = 24+6+4
  • Mars – 42 1/2 = 30+7 1/2+5
  • Sun – 53 5/6 = 38+9 1/2+6 1/3
  • Venus – 22 2/3 = 16+4+2 2/3
  • Mercury – 56 2/3 = 40+10+6 2/3
  • Moon – 70 5/6 = 50+12 1/2+8 1/3

The sum of all the planetary years = (85 + 34 + 42 1/2) + (53 5/6 + 70 5/6) + (22 2/3 + 56 2/3) = 161 1/2 + (124 2/3 + 79 1/3) = 161 1/2 + 204 = 365 1/2 days. Spooky, isn’t it?

Dividing the Year

These planetary days are used in a few different Hellenistic time lord techniques. Probably the simplest and most intuitive use is given by Firmicus Maternus in Chapter 29 of Book II of the Mathesis. Maternus uses them to divide the native’s year (birthday to birthday). We start with the ruler of the annual profection (click for an article on profections). The ruler of the annual profection is also called the lord of the year. From the lord of the year. we proceed from one planet to the next based on their order in the natal chart.

I will only use one example of this technique, as it can be time consuming to lay out. However, once you’ve laid out the days of the year when rulership switches, you can reference it throughout the year. It provides a nice map of the timing for the manifestation of different planetary indications for that year.

Bernie Madoff Example

Annual Profection: Mars in Gemini in XI

Madoff was arrested at age 70, on December 11, 2008. Mars, the out of sect malefic in his chart is in Gemini. Mars is ruled by Mercury, planet of commerce, and is in the 11th which pertains to groups and networking. This Mars is particularly relevant to his capture, as he was arrested in an 11th house, Gemini, annual profection. Therefore, the profection came to Mars and was ruled by Mercury.

Bernie Madoff’s Natal Chart

Planetary Years: Mars-Mercury relationships

Interestingly, the year 70 is also a year of the ripening of Mercury-Mars relationships (20+20+15+15). Therefore, by planetary years, his Mars in Gemini, Mercury in Aries, and their sextile relationship were activated. This reinforces the indication of the profection to Mars in Gemini.

Transit at Arrest: tMoon in Gemini conjunct nMars

Note that on the morning of his arrest, December 11, 2008, the transiting Moon was in early Gemini, conjoining his natal Mars. Mars and Mars were also transiting opposite (by sign) his natal Mars.

Planetary Days

The breakdown of the days of the year is also interesting. It starts on or around his birthday April 29th. His arrest is December 11th. To calculate the number of days between them we can use a duration calculator (click to go to calculation site). Using the calculator we find about 226 days between Madoff’s birthday and his arrest.

We begin the year with Mercury. This is because Mercury rules the sign of the annual profection (Gemini). Then we proceed in the order of the planets in the natal chart. The order that we follow is the zodiacal order, which is the same order with which the planets rise.

Mercury 56.666+ Moon 70.666+ Sun 53.8333+ Venus 22.666 = 203.83. Therefore, approximately 204 days after his birthday, the rulership went from Venus (in late Taurus) to Mars (in early Gemini). The period of Mars is 42.5 days, so it went from about 204 to about 246 days after his birthday. Therefore, at the time of Madoff’s arrest it was Mars that was the active planet pertaining to those days.

Conclusion

I leave you with a quote from Firmicus Maternus on the interpretation of the day activations from Mathesis, Book II, Ch. 29, #2 (Holden trans., 2011):

“when illnesses, when debilities, when gains, when losses happen, when joys, when sorrows. For when the benefic stars receive the days, we are freed from all evil when malefics, the sudden blows of misfortune strike us.”

Have fun experimenting with the basic use of the minor years of the planets and the planetary days! Feel free to share experiences in the comments.

Referencias
Featured Image

The featured image of Danse Macabre of Basel is in the public domain.

Anthony

Blogger interested in all things astrological, especially Hellenistic, medieval, Uranian, and asteroid astrology.

You May Also Like

Astrological Predictive Techniques | 1. Profections Intro

Astrological Predictive Techniques | 4. Profections in the Style of Vettius Valens

Astrological Predictive Techniques | Returns | 1. Hellenistic Basics

28 thoughts on &ldquo Astrological Predictive Techniques | Planetary Years | 1. Minor Years and the Division of Days &rdquo

Hi Anthony
There is a question on Profection and Planetary Years technique that bothers me quite a time.
At 29 years I married 19 days before my birthday. Note that my Saturn (in Aries), ruler of H4 and H5 is sitting right on the Descendant (1* distant). Also Saturn is in mutual reception, by exaltation, with the Sun (in Libra) sitting on the Ascendant (1* distant). Both Sun and Saturm are in the bounds of Saturn and the 12th part of Saturm is also in H7. As I understand. Saturn is the significator of Mariage. Last bit of info: Venus is in Virgo in H12.

The calculation of the 29th Planetary Years seems to be a tiresom gymnastics. As to the Profection, it falls in H6, Piscis, Jupiter beeng in H4.

By the other hand, since the mariage occured only 19 days before my 30st birthday and since the ancients did not care very much on exactness but reasoned in terms of periods, is it or is it not correct to calculate theProfection for the age of 30 (will fall neatly in H7) and use the Planetary Years of Saturn, the significator of mariage ??

Yes, I would go with Saturn for planetary years in that case. As 29 years old is your 30th year, and it was right before you turned 30. I would still state the profection as to the 6th house though.

Thank you very much Anthony.

Another interesting case in my life for your consideration.
At age 32 I got my PhD in Electrical Engineering from the University of Washington, Seattle, WA.

The Profection was in H9 (Gemini). H9 hosts the Moon (ruler of H10) conjunct Fortune (2*). Mercury squares the Moon (by sign) being both in Mutual Reception (Ruler x Triplicity). Sun (1Libra41) is on the Ascendant (2Libra29) trine the Moon.

Jupiter (ruling H3 and together with the Lot of Spirit in Capricorn) and Mercury (ruling H9) were activeted by Planetary Years during this period (Jup 12y + Merc 20y).

In the Natal Chart, Jupiter and Mercury form a tight Trine (2*). Mercury at 15* Virgo, in Helical Rising is advancing towards the Ascendant.

I would love to see your comments.

Thank you for the additional example. Ah, so you are already through school. The Mercury-Jupiter is an interesting activation. The 9th house and Jupiter-Mercury trine themes speak for themselves.

I think you may be mistaken about Mercury advancing in the chart though because you mention an early Libra Ascendant and Mercury is in mid-Virgo. It is the zodiacal degrees after the Ascendant which advance toward it as advancement is by the primary motion. Basically, degrees advance toward the Ascendant as they are rising – after rising then they are retreating from it.

Hi Anthony
Thanks for correcting my mistake about Mercury advancing.

Hello, Anthony
Found your article very instructive and per your request want to share a case that happened to myself. (sorry, English is not my native language)

“An intersting case of extreme unexpected luck

When I was 21 years old I tried the admission exam at one of the best Engineering Schools in Brazil and did not pass the exam.
Imagine my surprise when about one month later I received a comunication that due to some admission exams revision, I was accepted at the Engineering School. No one can expect such an unexpected luck in a lifetime!!

Now to the natal chart and minor years.

21 years old = Mars (15y) + Jupiter (12/2)

Mars in Sagitarius (H3), ruled by Jupiter, exaltation ruler of Cancer (H10).
Profection in Cancer(H10) with LOY Moon in Gemini (H9), conjunct Part of Fortune.
Moon and PF trine Sun partil conjunct Ascendant in Libra
Mercury at 15* Virgo in helical rising”.

Some comment on your part?

Thank you for the comments. I’m always fascinated by how well the planetary years work. Even the half years, as in your case with Jupiter! Best of luck at the engineering school!

There are dozens of examples I can cite from my own life but I’ll let you know a couple positive ones so as not to ruin the mood.